Interaction of Water with Cap-Ended Defective and Non-Defective Small Carbon Nanotubes

نویسندگان

  • Francis Starr
  • Jose L. Rivera
  • J. L. Rico
  • Francis W. Starr
  • Jose L. Rico
چکیده

We present a theoretical study of the structure, local curvature angles, and reactivity of cap-ended (7,0), defective and nondefective carbon nanotubes. We find that the most reactive sites are the atoms that form part of the caps even when the Stone-Wales defect is present. Each carbon in the carbon nanotube is located at the top of a pyramidal structure with three walls of 5-, 6-, or 7-carbon rings. Among the carbons making up the caps, the most reactive sites are the top pyramidal atoms between two 5-carbon rings and one 6-carbon ring and each 5-carbon ring has attached another 5-carbon ring. The least reactive sites are the top pyramidal atoms between three 6-carbon rings. The activity of each pyramidal structure is strongly correlated to its local curvature angle. The dissociation of one water molecule on the surface of the carbon nanotubes confirms the location of the most active site. The dissociation of water produces a hydroxyl group and a hydrogen atom united each to two adjacent carbon atoms. The dissociation process of water on carbon nanotubes is energetically favorable starting from the isolated molecules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Vibrational Behavior of Perfect and Defective Carbon Nanotubes Using Non–Linear Mass–Spring Model

In the present study, the effects of arrangement and distribution of multifarious types of defects on fundamental frequency of carbon nanotubes are investigated with respect to different chirality and boundary conditions. Interatomic interactions between each pair of carbon atoms are modeled using two types of non–linear spring–like elements. To obtain more information about the influences of d...

متن کامل

Amino acids interacting with defected carbon nanotubes: ab initio calculations

The adsorption of a number of amino acids on a defected single-walled carbon nanotube (SWCNT) isinvestigated by using the density-functional theory (DFT) calculations. The adsorption energies andequilibrium distances are calculated for various configurations such as amino acid attaching to defectsites heptagon, pentagon and hexagon in defective tube and also for several molecular orientationswi...

متن کامل

Investigation of Solvent Effects on Interaction of Single-Strand DNA with Open-End of Single Walled Carbon Nanotubes Using QM and MM methods

The interaction of biomolecules with carbon nanotubes (CNTs) has generated a great deal ofinterest in the past few years. The interaction between B-form single-strand DNA (ssDNA) andsingle-walled carbon nanotubes (SWCNTs) is a subject of intense current interest; however thereare a relatively small number of papers in the literature dealing with interaction of DNA andSWCNTs. In this work we inv...

متن کامل

An Integrated Inventory Model with Controllable Lead time and Setup Cost Reduction for Defective and Non-Defective Items

In this paper, the study deals with the lead time and setup reduction problem in the vendor-purchaser integrated inventory model. The cost of capital (i.e., opportunity cost) is one of the key factors in making the inventory and investment decisions. Lead time is an important element in any inventory system. The proposed model is presents an integrated inventory model with controllable lead tim...

متن کامل

Dissociation of water on defective carbon substrates.

Using calculations from first principles, we found that water can dissociate over defective sites in graphene or nanotubes following many possible reaction pathways, some of which have activation barriers lower than half the value for the dissociation of bulk water. This reduction is caused by spin selection rules that allow the system to remain on the same spin surface throughout the reaction.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014